CausalDiscoveryToolbox入门

简介

综合转载于:

最近在分析观测数据的因果关系时,发现一个很好用的工具包——CausalDiscoveryToolbox(以下简称Cdt),功能齐全,轻松上手因果发现。

下面简单整理下该工具包的原理+用法。

CausalDiscoveryToolbox简介

[Github] [论文] [文档]

  • 用于在从数据的联合概率分布样本中学习因果图和相关的因果机制。
  • 实现了端到端的因果发现方法,支持从观测数据中恢复直接依赖关系(因果图的骨架)和变量之间的因果关系。
  • 实现了许多用于图结构恢复的算法(包括来自bnlearn1,pcalg2包的算法)。
  • 基于Numpy,Scikit-learn,Pytorch和R开发。
  • 支持GPU硬件加速。

因果建模的过程

Cdt工具包对一般的因果建模流程进行了概括:

Cdt工具包可以直接从观测数据中进行因果发现(获得因果有向图),也可以先恢复图结构(获得无向依赖图)之后,再进行因果发现(获得因果有向图)。

图恢复算法 Graph recovery algorithms

在Cdt工具包中实现了两种从原始数据中恢复无向依赖图的方法:

  • 二元依赖 (Bivariate dependencies)

    • 用于确定因果图中的(无向)边。
    • 依赖于统计检验,例如皮尔逊相关性(Pearson’s correlation)或互信息分数(mutual information scores)3。在第一阶段中可以使用二元依赖关系来建立因果图骨架。
  • 多元方法 (Multivariate methods)

    • 目的是恢复全因果图。即为图的所有变量选择父、子和配偶节点(子的父母)。
    • 输出一个networkx.Graph图对象。

因果发现算法 Causal Discovery algorithms

Cdt包的主要焦点是从观测数据中发现因果关系,从成对设置到全图建模。

  • 成对建模(The pairwise setting)

    • 把每一对变量作为因果对问题(CEP4,cause-effect pair problem)进行处理,从而确定这些变量之间的因果关系。
    • 比如识别X→Y还是Y→X,或者X与Y没有关系。因果对参考教程
    • 成对建模的两个经典方法:加性噪声模型(ANM)5和IGCI6 (Information-Geometric Causal Inference),在有篇因果对的综述里有详细介绍,后面有空梳理下。
    • 成对建模的前提假设是:这两个变量已经受到其他协变量的制约,并且剩余的潜在协变量几乎没有影响,可以被认为是“噪声”。
  • 全图建模(The graph setting)

    • 基于贝叶斯或基于分数的方法,输出有向无环图或部分有向无环图。

      ①依赖于条件独立性测试,称为基于约束的方法,如PC7或FCI8。

      ②依赖于基于分数的方法,通过图搜索启发式方法(如GES9或CAM10)找到使似然分数最大化的图。

      ③利用著名的对抗生成网络,例如CGNN11或SAM12。

安装Cdt工具包

  1. 直接使用pip安装:

    1
    pip install cdt
  2. 安装R语言及相应R包

    1
    2
    3
    4
    install.packages('BiocManager')
    BiocManager::install(c("SID", "bnlearn", "pcalg", "kpcalg", "glmnet", "mboost", "devtools"))'
    library(devtools)
    install_github("Diviyan-Kalainathan/RCIT")
  3. 修改cdt找R包的路径

    1. 找到对应的cdt安装路径,我是在anaconda下配置的环境,我的路径是D:\anaconda3\envs\dowhy\Lib\site-packages\cdt
    2. 进入utils,打开Settings.py,修改_init_函数下的self.rpath参数为对应的刚才R语言安装目录下的Rscript的路径,我的Rscript路径为D:\SoftWare\R-4.1.2\bin\Rscript.exe
    3. 最终修改样式:
    1
    self.rpath = 'D:\\SoftWare\\R-4.1.2\\bin\\Rscript.exe'

使用示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import cdt
from cdt import SETTINGS
SETTINGS.verbose=True
#SETTINGS.NJOBS=16
#SETTINGS.GPU=1
import networkx as nx
import matplotlib.pyplot as plt
plt.axis('off')

# Load data
data = pd.read_csv("lucas0_train.csv")
print(data.head())

# Finding the structure of the graph
glasso = cdt.independence.graph.Glasso()
skeleton = glasso.predict(data)

# Pairwise setting
model = cdt.causality.pairwise.ANM()
output_graph = model.predict(data, skeleton)

# Visualize causality graph
options = {
"node_color": "#A0CBE2",
"width": 1,
"node_size":400,
"edge_cmap": plt.cm.Blues,
"with_labels": True,
}
nx.draw_networkx(output_graph,**options)

上述代码输出的因果图:

示例数据:
https://download.csdn.net/download/Bit_Coders/16241408

网络结构的绘制参考networkx文档:
https://networkx.org/documentation/stable/index.html

工具包模块

该软件包分为5个模块:

  • 因果关系:cdt.causality在成对设置或图形设置中实施因果发现算法。
  • 独立性:cdt.independence包括恢复数据依赖关系图的方法。
  • 数据:cdt.data为用户提供生成数据和加载基准数据的工具。
  • 实用程序:cdt.utils为用户提供用于模型构建,图形实用程序和设置的工具。
  • 指标:cdt.metrics包括图表的评分指标,以输入为准 networkx.DiGraph
    用于计算的所有方法,接口与Scikit-learn类似,在这里.predict() 发动对给定的数据到工具箱中的算法,.fit()使得训练学习算法大部分的算法是类,它们的参数可以在自定义.init()中设置。

程序包及其算法的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
cdt package
|
|- independence
| |- graph (Infering the skeleton from data)
| | |- Lasso variants (Randomized Lasso[1], Glasso[2], HSICLasso[3])
| | |- FSGNN (CGNN[12] variant for feature selection)
| | |- Skeleton recovery using feature selection algorithms (RFECV[5], LinearSVR[6], RRelief[7], ARD[8,9], DecisionTree)
| |
| |- stats (pairwise methods for dependency)
| |- Correlation (Pearson, Spearman, KendallTau)
| |- Kernel based (NormalizedHSIC[10])
| |- Mutual information based (MIRegression, Adjusted Mutual Information[11], Normalized mutual information[11])
|
|- data
| |- CausalPairGenerator (Generate causal pairs)
| |- AcyclicGraphGenerator (Generate FCM-based graphs)
| |- load_dataset (load standard benchmark datasets)
|
|- causality
| |- graph (methods for graph inference)
| | |- CGNN[12]
| | |- PC[13]
| | |- GES[13]
| | |- GIES[13]
| | |- LiNGAM[13]
| | |- CAM[13]
| | |- GS[23]
| | |- IAMB[24]
| | |- MMPC[25]
| | |- SAM[26]
| | |- CCDr[27]
| |
| |- pairwise (methods for pairwise inference)
| |- ANM[14] (Additive Noise Model)
| |- IGCI[15] (Information Geometric Causal Inference)
| |- RCC[16] (Randomized Causation Coefficient)
| |- NCC[17] (Neural Causation Coefficient)
| |- GNN[12] (Generative Neural Network -- Part of CGNN )
| |- Bivariate fit (Baseline method of regression)
| |- Jarfo[20]
| |- CDS[20]
| |- RECI[28]
|
|- metrics (Implements the metrics for graph scoring)
| |- Precision Recall
| |- SHD
| |- SID [29]
|
|- utils
|- Settings -> SETTINGS class (hardware settings)
|- loss -> MMD loss [21, 22] & various other loss functions
|- io -> for importing data formats
|- graph -> graph utilities

使用感想

  • 接口简单,文档清晰,易于上手。
  • 不过目前还不支持使用干预措施
  • Cdt工具包是在观察环境进行因果发现的软件包,所以相当于还是在因果科学的第一层级“关联”。不过从当前的实际应用角度来说,“干预”和“反事实”的实施难度较大,“关联”层级的因果发现和推理已经能起到一定的作用。
一分一毛,也是心意。