Python知识点

简介

廖老师那里摘抄的Python知识点

listtuple

list方法

  1. append追加元素到末尾:
  2. insert可以把元素插入到指定的位置,比如索引号为1的位置:
  3. 要删除list末尾的元素,用pop()方法;要删除指定位置的元素,用pop(i)方法,其中i是索引位置。

listtuple的区别

  1. tuple 没有方法:没有 appendextend 方法、没有 removepop 方法、没有 index 方法、可以使用 in 来查看一个元素是否存在于 tuple 中。
  2. tuplelist相比不可变
    1
    2
    3
    >>> t = (1)
    >>> t
    1

定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:

1
2
3
>>> t = (1,)
>>> t
(1,)

distset

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

1
2
>>> 'Thomas' in d
False

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

1
2
3
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互式命令行不显示结果。
要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

1
2
3
4
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

要创建一个set,需要提供一个list作为输入集合:

1
2
3
>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

1
2
3
4
5
6
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

通过remove(key)方法可以删除元素:

1
2
3
>>> s.remove(4)
>>> s
{1, 2, 3}

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

1
2
3
4
5
6
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}

函数的参数

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END再返回:

1
2
3
def add_end(L=[]):
L.append('END')
return L

当你正常调用时,结果似乎不错:

1
2
3
4
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

1
2
>>> add_end()
['END']

但是,再次调用add_end()时,结果就不对了:

1
2
3
4
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。
原因解释如下:
Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。
所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

1
2
3
4
5
def add_end(L=None):
if L is None:
L = []
L.append('END')
return L

现在,无论调用多少次,都不会有问题:

1
2
3
4
>>> add_end()
['END']
>>> add_end()
['END']

Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

1
2
3
>>> nums = [1, 2, 3]
>>> calc(*nums)
14

*nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

1
2
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)

函数person除了必选参数nameage外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

1
2
>>> person('Michael', 30)
name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

1
2
3
4
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到nameage这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

1
2
3
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

1
2
3
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

**extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra。

命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。
仍以person()函数为例,我们希望检查是否有cityjob参数:

1
2
3
4
5
6
7
8
def person(name, age, **kw):
if 'city' in kw:
# 有city参数
pass
if 'job' in kw:
# 有job参数
pass
print('name:', name, 'age:', age, 'other:', kw)

但是调用者仍可以传入不受限制的关键字参数:

1
>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这种方式定义的函数如下:

1
2
def person(name, age, *, city, job):
print(name, age, city, job)

和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符**后面的参数被视为命名关键字参数。

调用方式如下:

1
2
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:

1
2
def person(name, age, *args, city, job):
print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

1
2
3
4
>>> person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: person() takes 2 positional arguments but 4 were given

由于调用时缺少参数名city和job,Python解释器把这4个参数均视为位置参数,但person()函数仅接受2个位置参数。

命名关键字参数可以有缺省值,从而简化调用:

1
2
def person(name, age, *, city='Beijing', job):
print(name, age, city, job)

由于命名关键字参数city具有默认值,调用时,可不传入city参数:

1
2
>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*作为特殊分隔符。如果缺少*,Python解释器将无法识别位置参数和命名关键字参数:

1
2
3
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

比如定义一个函数,包含上述若干种参数:

1
2
def f1(a, b, c=0, *args, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)

1
2
def f2(a, b, c=0, *, d, **kw):
print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

1
2
3
4
5
6
7
8
9
10
>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

最神奇的是通过一个tuple和dict,你也可以调用上述函数:

1
2
3
4
5
6
7
8
>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

递归函数

汉诺塔的移动可以用递归函数非常简单地实现。请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A、B、C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法:

1
2
3
4
5
6
7
8
9
def move(n,a,b,c):
if n== 1:
print(a,'->',c)
return
else:
move(n-1, a, c, b)
move(1, a, b, c)
move(n-1, b, a, c)
move(3, 'A', 'B', 'C')

迭代

Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

1
2
3
4
5
6
7
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()
由于字符串也是可迭代对象,因此,也可以作用于for循环:

1
2
3
4
5
6
>>> for ch in 'ABC':
... print(ch)
...
A
B
C

如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

1
2
3
4
5
6
7
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

1
2
3
4
5
6
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C

列表生成式

1
2
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

1
2
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

1
2
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

1
2
3
>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:

1
2
3
4
5
6
7
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成list:

1
2
3
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1
2
3
4
5
6
7
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'

注意,赋值语句:

1
a, b = b, a + b

相当于:

1
2
3
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:

1
2
3
4
5
6
7
8
>>> fib(6)
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

1
2
3
4
5
6
7
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

1
2
3
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:

1
2
3
4
5
6
7
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

1
2
3
4
5
6
7
8
9
>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

杨辉三角定义如下:

1
2
3
4
5
6
          1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

把每一行看做一个list,试写一个generator,不断输出下一行的list:

1
2
3
4
5
6
7
8
9
10
11
12
def triangles():
last_line = [0,1]
while True:
current_line = []
i = 1
while i < len(last_line):
current_line.append(last_line[i] + last_line[i-1])
i += 1
yield current_line
current_line.insert(0,0)
current_line.append(0)
last_line=current_line

1
2
3
4
5
6
n = 0
for t in triangles():
print(t)
n = n + 1
if n == 10:
break

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如listtupledictsetstr等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable
可以使用isinstance()判断一个对象是否是Iterable对象:

1
2
3
4
5
6
7
8
9
10
11
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
可以使用isinstance()判断一个对象是否是Iterator对象:

1
2
3
4
5
6
7
8
9
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator
listdictstrIterable变成Iterator可以使用iter()函数:

1
2
3
4
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

map/reduce

map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
把这个list所有数字转为字符串:

1
2
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']

只需要一行代码。
再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

1
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

1
2
3
4
5
6
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

当然求和运算可以直接用Python内建函数sum(),没必要动用reduce
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579reduce就可以派上用场:

1
2
3
4
5
6
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

1
2
3
4
5
6
7
8
9
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579

整理成一个str2int的函数就是:

1
2
3
4
5
6
7
8
from functools import reduce

def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
return reduce(fn, map(char2num, s))

还可以用lambda函数进一步简化成:

1
2
3
4
5
6
7
from functools import reduce

def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]

def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))

也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码。

filiter

Python内建的filter()函数用于过滤序列。
map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

1
2
3
4
5
def is_odd(n):
return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

1
2
3
4
5
def not_empty(s):
return s and s.strip()

list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

用filter求素数

计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:

首先,列出从2开始的所有自然数,构造一个序列:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取新序列的第一个数5,然后用5把序列的5的倍数筛掉:

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

不断筛下去,就可以得到所有的素数。

用Python来实现这个算法,可以先构造一个从3开始的奇数序列:

1
2
3
4
5
def _odd_iter():
n = 1
while True:
n = n + 2
yield n

注意这是一个生成器,并且是一个无限序列。

然后定义一个筛选函数:

1
2
def _not_divisible(n):
return lambda x: x % n > 0

最后,定义一个生成器,不断返回下一个素数:

1
2
3
4
5
6
7
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列

这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。

由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:

1
2
3
4
5
6
# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break

注意到Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。

判断1000以内的回文数:

1
2
3
4
5
def is_palindrome(n):
return n > 10 and int((str(n)[0] == str(n)[-1]))

output = filter(is_palindrome, range(1, 1000))
print(list(output))

sorted

进行反向排序,不必改动key函数,可以传入第三个参数reverse=True

1
2
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

key也可以是lambda表达式,输入参数为字符。

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

1
2
3
4
5
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

1
2
3
4
5
6
7
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

1
2
3
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>

调用函数f时,才真正计算求和的结果:

1
2
>>> f()
25

在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:

1
2
3
4
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False

f1()f2()的调用结果互不影响。

闭包

注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。

另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:

1
2
3
4
5
6
7
8
9
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs

f1, f2, f3 = count()

在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。

你可能认为调用f1()f2()f3()结果应该是149,但实际结果是:

1
2
3
4
5
6
>>> f1()
9
>>> f2()
9
>>> f3()
9

全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9

返回闭包时牢记的一点就是:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:

1
2
3
4
5
6
7
8
9
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs

再看看结果:

1
2
3
4
5
6
7
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9

缺点是代码较长,可利用lambda函数缩短代码。

装饰器

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

1
2
3
4
5
6
>>> def now():
... print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25

函数对象有一个__name__属性,可以拿到函数的名字:

1
2
3
4
>>> now.__name__
'now'
>>> f.__name__
'now'

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

1
2
3
4
5
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

1
2
3
@log
def now():
print('2015-3-25')

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

1
2
3
>>> now()
call now():
2015-3-25

@log放到now()函数的定义处,相当于执行了语句:

1
now = log(now)

由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

1
2
3
4
5
6
7
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator

这个3层嵌套的decorator用法如下:

1
2
3
@log('execute')
def now():
print('2015-3-25')

执行结果如下:

1
2
3
>>> now()
execute now():
2015-3-25

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

1
>>> now = log('execute')(now)

我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper'

1
2
>>> now.__name__
'wrapper'

因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

1
2
3
4
5
6
7
8
import functools

def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper

或者针对带参数的decorator:

1
2
3
4
5
6
7
8
9
10
11
import functools

def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

小结

在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

1
2
>>> int('12345')
12345

int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:

1
2
3
4
>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565

假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

1
2
def int2(x, base=2):
return int(x, base)

这样,我们转换二进制就非常方便了:

1
2
3
4
>>> int2('1000000')
64
>>> int2('1010101')
85

functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2

1
2
3
4
5
6
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:

1
2
>>> int2('1000000', base=10)
1000000

最后,创建偏函数时,实际上可以接收函数对象、*args**kw这3个参数,当传入:

1
int2 = functools.partial(int, base=2)

实际上固定了int()函数的关键字参数base,也就是:

1
int2('10010')

相当于:

1
2
kw = { 'base': 2 }
int('10010', **kw)

当传入:

1
max2 = functools.partial(max, 10)

实际上会把10作为*args的一部分自动加到左边,也就是:

1
max2(5, 6, 7)

相当于:

1
2
args = (10, 5, 6, 7)
max(*args)

结果为10。

如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问。

需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:

1
2
>>> bart._Student__name
'Bart Simpson'

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

最后注意下面的这种错误写法:

1
2
3
4
5
6
>>> bart = Student('Bart Simpson', 98)
>>> bart.get_name()
'Bart Simpson'
>>> bart.__name = 'New Name' # 设置__name变量!
>>> bart.__name
'New Name'

表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

1
2
>>> bart.get_name() # get_name()内部返回self.__name
'Bart Simpson'

内置函数

判断基本数据类型可以直接写intstr等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:

1
2
3
4
5
6
7
8
9
10
11
12
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。
我们回顾上次的例子,如果继承关系是:

1
object -> Animal -> Dog -> Husky

那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:

1
2
3
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()

然后,判断:

1
2
>>> isinstance(h, Husky)
True

没有问题,因为h变量指向的就是Husky对象。

再判断:

1
2
>>> isinstance(h, Dog)
True

h虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。

因此,我们可以确信,h还是Animal类型:

1
2
>>> isinstance(h, Animal)
True

同理,实际类型是Dog的d也是Animal类型:

1
2
>>> isinstance(d, Dog) and isinstance(d, Animal)
True

但是,d不是Husky类型:

1
2
>>> isinstance(d, Husky)
False

能用type()判断的基本类型也可以用isinstance()判断:

1
2
3
4
5
6
>>> isinstance('a', str)
True
>>> isinstance(123, int)
True
>>> isinstance(b'a', bytes)
True

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:

1
2
3
4
>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:

1
2
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

1
2
3
4
>>> len('ABC')
3
>>> 'ABC'.__len__()
3

我们自己写的类,如果也想用len(myObj)的话,就自己写一个__len__()方法:

1
2
3
4
5
6
7
>>> class MyDog(object):
... def __len__(self):
... return 100
...
>>> dog = MyDog()
>>> len(dog)
100

剩下的都是普通属性或方法,比如lower()返回小写的字符串:

1
2
>>> 'ABC'.lower()
'abc'

仅仅把属性和方法列出来是不够的,配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态:

1
2
3
4
5
6
7
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()

紧接着,可以测试该对象的属性:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19

如果试图获取不存在的属性,会抛出AttributeError的错误:

1
2
3
4
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'

可以传入一个default参数,如果属性不存在,就返回默认值:

1
2
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404

也可以获得对象的方法:

1
2
3
4
5
6
7
8
9
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:

1
2
class Student(object):
pass

然后,尝试给实例绑定一个属性:

1
2
3
4
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael

还可以尝试给实例绑定一个方法:

1
2
3
4
5
6
7
8
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:

1
2
3
4
5
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

1
2
3
4
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score

给class绑定方法后,所有实例均可调用:

1
2
3
4
5
6
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。

但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加nameage属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

1
2
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称

然后,我们试试:

1
2
3
4
5
6
7
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

1
2
3
4
5
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

使用@property

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

1
2
s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

1
2
3
4
5
6
7
8
9
10
11
class Student(object):

def get_score(self):
return self._score

def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

1
2
3
4
5
6
7
8
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Student(object):

@property
def score(self):
return self._score

@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

1
2
3
4
5
6
7
8
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过gettersetter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Student(object):

@property
def birth(self):
return self._birth

@birth.setter
def birth(self, value):
self._birth = value

@property
def age(self):
return 2015 - self._birth

上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

多继承MixIn

在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn

为了更好地看出继承关系,我们把RunnableFlyable改为RunnableMixInFlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn

1
2
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass

MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。

Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServerUDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixInThreadingMixIn提供。通过组合,我们就可以创造出合适的服务来。

比如,编写一个多进程模式的TCP服务,定义如下:

1
2
class MyTCPServer(TCPServer, ForkingMixIn):
pass

编写一个多线程模式的UDP服务,定义如下:

1
2
class MyUDPServer(UDPServer, ThreadingMixIn):
pass

如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn

1
2
class MyTCPServer(TCPServer, CoroutineMixIn):
pass

这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。

定制类

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。

__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让class作用于len()函数。

除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。

我们先定义一个Student类,打印一个实例:

1
2
3
4
5
6
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>

打印出一堆<__main__.Student object at 0x109afb190>,不好看。

怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

1
2
3
4
5
6
7
8
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)

这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:

1
2
3
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。

解决办法是再定义一个__repr__()。但是通常__str__()__repr__()代码都是一样的,所以,有个偷懒的写法:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__

如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
12
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b

def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己

def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
12
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
__getitem__

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

1
2
3
4
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

1
2
3
4
5
6
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a

现在,就可以按下标访问数列的任意一项了:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

但是list有个神奇的切片方法:

1
2
>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]

对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L

现在试试Fib的切片:

1
2
3
4
5
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

但是没有对step参数作处理:

1
2
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。

此外,如果把对象看成dict,__getitem__()的参数也可能是一个可以作keyobject,例如str

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:

1
2
3
4
class Student(object):

def __init__(self):
self.name = 'Michael'

调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

1
2
3
4
5
6
7
>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到score这个attribute

要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self):
self.name = 'Michael'

def __getattr__(self, attr):
if attr=='score':
return 99

当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:

1
2
3
4
5
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99

返回函数也是完全可以的:

1
2
3
4
5
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25

只是调用方式要变为:

1
2
>>> s.age()
25

注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。

此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:

1
2
3
4
5
6
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

举个例子:

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
http://api.server/user/friends
http://api.server/user/timeline/list
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

1
2
3
4
5
6
7
8
9
10
11
12
class Chain(object):

def __init__(self, path=''):
self._path = path

def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))

def __str__(self):
return self._path

__repr__ = __str__

试试:

1
2
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!

还有些REST API会把参数放到URL中,比如GitHub的API:

GET /users/:user/repos

调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:

Chain().users('michael').repos

就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。

一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name

def __call__(self):
print('My name is %s.' % self.name)

调用方式如下:

1
2
3
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:

1
2
3
4
5
6
7
8
9
10
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False

通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。

错误处理

如果发生了不同类型的错误,应该由不同的except语句块处理。没错,可以有多个except来捕获不同类型的错误:

1
2
3
4
5
6
7
8
9
10
11
try:
print('try...')
r = 10 / int('a')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
finally:
print('finally...')
print('END')

int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError

此外,如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句:

1
2
3
4
5
6
7
8
9
10
11
12
13
try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')

Python的错误其实也是class,所有的错误类型都继承自BaseException,所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:

1
2
3
4
5
6
try:
foo()
except ValueError as e:
print('ValueError')
except UnicodeError as e:
print('UnicodeError')

第二个except永远也捕获不到UnicodeError,因为UnicodeErrorValueError的子类,如果有,也被第一个except给捕获了。

Python所有的错误都是从BaseException类派生的,常见的错误类型和继承关系看这里:

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

使用try...except捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用foo()foo()调用bar(),结果bar()出错了,这时,只要main()捕获到了,就可以处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
def foo(s):
return 10 / int(s)

def bar(s):
return foo(s) * 2

def main():
try:
bar('0')
except Exception as e:
print('Error:', e)
finally:
print('finally...')

也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally的麻烦。

如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py

1
2
3
4
5
6
7
8
9
10
11
# err.py:
def foo(s):
return 10 / int(s)

def bar(s):
return foo(s) * 2

def main():
bar('0')

main()

执行,结果如下:

1
2
3
4
5
6
7
8
9
10
11
$ python3 err.py
Traceback (most recent call last):
File "err.py", line 11, in <module>
main()
File "err.py", line 9, in main
bar('0')
File "err.py", line 6, in bar
return foo(s) * 2
File "err.py", line 3, in foo
return 10 / int(s)
ZeroDivisionError: division by zero

出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:

错误信息第1行:

Traceback (most recent call last):

告诉我们这是错误的跟踪信息。

第2~3行:

  File "err.py", line 11, in <module>
main()

调用main()出错了,在代码文件err.py的第11行代码,但原因是第9行:

  File "err.py", line 9, in main
bar('0')

调用bar('0')出错了,在代码文件err.py的第9行代码,但原因是第6行:

  File "err.py", line 6, in bar
return foo(s) * 2

原因是return foo(s) * 2这个语句出错了,但这还不是最终原因,继续往下看:

  File "err.py", line 3, in foo
return 10 / int(s)

原因是return 10 / int(s)这个语句出错了,这是错误产生的源头,因为下面打印了:

ZeroDivisionError: integer division or modulo by zero

根据错误类型ZeroDivisionError,我们判断,int(s)本身并没有出错,但是int(s)返回0,在计算10 / 0时出错,至此,找到错误源头。

如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。

Python内置的logging模块可以非常容易地记录错误信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# err_logging.py

import logging

def foo(s):
return 10 / int(s)

def bar(s):
return foo(s) * 2

def main():
try:
bar('0')
except Exception as e:
logging.exception(e)

main()
print('END')

同样是出错,但程序打印完错误信息后会继续执行,并正常退出:

1
2
3
4
5
6
7
8
9
10
11
$ python3 err_logging.py
ERROR:root:division by zero
Traceback (most recent call last):
File "err_logging.py", line 13, in main
bar('0')
File "err_logging.py", line 9, in bar
return foo(s) * 2
File "err_logging.py", line 6, in foo
return 10 / int(s)
ZeroDivisionError: division by zero
END

通过配置,logging还可以把错误记录到日志文件里,方便事后排查。

因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。

如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise语句抛出一个错误的实例:

1
2
3
4
5
6
7
8
9
10
11
# err_raise.py
class FooError(ValueError):
pass

def foo(s):
n = int(s)
if n==0:
raise FooError('invalid value: %s' % s)
return 10 / n

foo('0')

执行,可以最后跟踪到我们自己定义的错误:

1
2
3
4
5
6
7
$ python3 err_raise.py 
Traceback (most recent call last):
File "err_throw.py", line 11, in <module>
foo('0')
File "err_throw.py", line 8, in foo
raise FooError('invalid value: %s' % s)
__main__.FooError: invalid value: 0

只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueErrorTypeError),尽量使用Python内置的错误类型。

最后,我们来看另一种错误处理的方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# err_reraise.py

def foo(s):
n = int(s)
if n==0:
raise ValueError('invalid value: %s' % s)
return 10 / n

def bar():
try:
foo('0')
except ValueError as e:
print('ValueError!')
raise

bar()

bar()函数中,我们明明已经捕获了错误,但是,打印一个ValueError!后,又把错误通过raise语句抛出去了,这不有病么?

其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。好比一个员工处理不了一个问题时,就把问题抛给他的老板,如果他的老板也处理不了,就一直往上抛,最终会抛给CEO去处理。

raise语句如果不带参数,就会把当前错误原样抛出。此外,在exceptraise一个Error,还可以把一种类型的错误转化成另一种类型:

1
2
3
4
try:
10 / 0
except ZeroDivisionError:
raise ValueError('input error!')

只要是合理的转换逻辑就可以,但是,决不应该把一个IOError转换成毫不相干的ValueError

pdb

启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:

1
2
3
4
# err.py
s = '0'
n = int(s)
print(10 / n)

然后启动:

1
2
3
$ python3 -m pdb err.py
> /Users/michael/Github/learn-python3/samples/debug/err.py(2)<module>()
-> s = '0'

以参数-m pdb启动后,pdb定位到下一步要执行的代码-> s = '0'。输入命令l来查看代码:

1
2
3
4
5
(Pdb) l
1 # err.py
2 -> s = '0'
3 n = int(s)
4 print(10 / n)

输入命令n可以单步执行代码:

1
2
3
4
5
6
(Pdb) n
> /Users/michael/Github/learn-python3/samples/debug/err.py(3)<module>()
-> n = int(s)
(Pdb) n
> /Users/michael/Github/learn-python3/samples/debug/err.py(4)<module>()
-> print(10 / n)

任何时候都可以输入命令p 变量名来查看变量:

1
2
3
4
(Pdb) p s
'0'
(Pdb) p n
0

输入命令q结束调试,退出程序:

1
(Pdb) q

这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊。还好,我们还有另一种调试方法。

1
pdb.set_trace()

这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点:

1
2
3
4
5
6
7
# err.py
import pdb

s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print(10 / n)

运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行:

1
2
3
4
5
6
7
8
9
10
$ python3 err.py 
> /Users/michael/Github/learn-python3/samples/debug/err.py(7)<module>()
-> print(10 / n)
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
File "err.py", line 7, in <module>
print(10 / n)
ZeroDivisionError: division by zero

这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去。

操作文件和目录

如果我们要操作文件、目录,可以在命令行下面输入操作系统提供的各种命令来完成。比如dircp等命令。

如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只是简单地调用了操作系统提供的接口函数,Python内置的os模块也可以直接调用操作系统提供的接口函数。

打开Python交互式命令行,我们来看看如何使用os模块的基本功能:

1
2
3
>>> import os
>>> os.name # 操作系统类型
'posix'

如果是posix,说明系统是LinuxUnixMac OS X,如果是nt,就是Windows系统。

要获取详细的系统信息,可以调用uname()函数:

1
2
>>> os.uname()
posix.uname_result(sysname='Darwin', nodename='MichaelMacPro.local', release='14.3.0', version='Darwin Kernel Version 14.3.0: Mon Mar 23 11:59:05 PDT 2015; root:xnu-2782.20.48~5/RELEASE_X86_64', machine='x86_64')

注意uname()函数在Windows上不提供,也就是说,os模块的某些函数是跟操作系统相关的。

在操作系统中定义的环境变量,全部保存在os.environ这个变量中,可以直接查看:

1
2
>>> os.environ
environ({'VERSIONER_PYTHON_PREFER_32_BIT': 'no', 'TERM_PROGRAM_VERSION': '326', 'LOGNAME': 'michael', 'USER': 'michael', 'PATH': '/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin', ...})

要获取某个环境变量的值,可以调用os.environ.get('key')

1
2
3
4
>>> os.environ.get('PATH')
'/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin'
>>> os.environ.get('x', 'default')
'default'

操作文件和目录的函数一部分放在os模块中,一部分放在os.path模块中,这一点要注意一下。查看、创建和删除目录可以这么调用:

1
2
3
4
5
6
7
8
9
10
# 查看当前目录的绝对路径:
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')

把两个路径合成一个时,不要直接拼字符串,而要通过os.path.join()函数,这样可以正确处理不同操作系统的路径分隔符。在Linux/Unix/Mac下,os.path.join()返回这样的字符串:

part-1/part-2

而Windows下会返回这样的字符串:

part-1\part-2

同样的道理,要拆分路径时,也不要直接去拆字符串,而要通过os.path.split()函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:

1
2
>>> os.path.split('/Users/michael/testdir/file.txt')
('/Users/michael/testdir', 'file.txt')

os.path.splitext()可以直接让你得到文件扩展名,很多时候非常方便:

1
2
>>> os.path.splitext('/path/to/file.txt')
('/path/to/file', '.txt')

这些合并、拆分路径的函数并不要求目录和文件要真实存在,它们只对字符串进行操作。

文件操作使用下面的函数。假定当前目录下有一个test.txt文件:

1
2
3
4
# 对文件重命名:
>>> os.rename('test.txt', 'test.py')
# 删掉文件:
>>> os.remove('test.py')

但是复制文件的函数居然在os模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。

幸运的是shutil模块提供了copyfile()的函数,你还可以在shutil模块中找到很多实用函数,它们可以看做是os模块的补充。

最后看看如何利用Python的特性来过滤文件。比如我们要列出当前目录下的所有目录,只需要一行代码:

1
2
>>> [x for x in os.listdir('.') if os.path.isdir(x)]
['.lein', '.local', '.m2', '.npm', '.ssh', '.Trash', '.vim', 'Applications', 'Desktop', ...]

要列出所有的.py文件,也只需一行代码:

1
2
>>> [x for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py']
['apis.py', 'config.py', 'models.py', 'pymonitor.py', 'test_db.py', 'urls.py', 'wsgiapp.py']

序列化

在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

1
d = dict(name='Bob', age=20, score=88)

可以随时修改变量,比如把name改成'Bill‘,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供了pickle模块来实现序列化。

首先,我们尝试把一个对象序列化并写入文件:

1
2
3
4
>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'

pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object

1
2
3
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

1
2
3
4
5
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

变量的内容又回来了!

当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

JSON类型 Python类型
{} dict
[] list
“string” str
1234.56 int或float
true/false True/False
null None

Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:

1
2
3
4
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object

要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

1
2
3
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{'age': 20, 'score': 88, 'name': 'Bob'}

由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str与JSON的字符串之间转换。

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

1
2
3
4
5
6
7
8
9
10
import json

class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score

s = Student('Bob', 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError

1
2
3
Traceback (most recent call last):
...
TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/3/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

1
2
3
4
5
6
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:

1
2
>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict

1
print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

1
2
def dict2student(d):
return Student(d['name'], d['age'], d['score'])

运行结果如下:

1
2
3
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> print(json.loads(json_str, object_hook=dict2student))
<__main__.Student object at 0x10cd3c190>

打印出的是反序列化的Student实例对象。

string模块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
>>> import string
>>> string.ascii_letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.ascii_uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.digits
'0123456789'
>>> string.hexdigits
'0123456789abcdefABCDEF'
>>> string.letters
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
>>> string.lowercase
'abcdefghijklmnopqrstuvwxyz'
>>> string.uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> string.octdigits
'01234567'
>>> string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
>>> string.printable
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'
>>> string.whitespace
'\t\n\x0b\x0c\r

爬虫

累积式抓取 or 增量式抓取

爬虫的工作策略一般则可以分为累积式抓取(cumulative crawling)和增量式抓取(incremental crawling)两种。
累积式抓取是指从某一个时间点开始,通过遍历的方式抓取系统所能允许存储和处理的所有网页。在理想的软硬件环境 下,经过足够的运行时间,累积式抓取的策略可以保证抓取到相当规模的网页集合。但由于Web数据的动态特性,集合中网页的被抓取时间点是不同的,页面被更新的情况也不同,因此累积式抓取到的网页集合事实上并无法与真实环境中的网络数据保持一致。
增量式抓取是指在具有一定量规模的网络页面集合的基础上,采用更新数据的方式选取已有集合中的过时网页进行抓取,以保证所抓取到的数据与真实网络数据足够接近。进行增量式抓取的前提是,系统已经抓取了足够数量的网络页面,并具有这些页面被抓取的时间信息。
面向实际应用环境的网络蜘蛛设计中,通常既包括累积式抓取,也包括增量式抓取的策略。累积式抓取一般用于数据集合的整体建立或大规模更新阶段;而增量式抓取则主要针对数据集合的日常维护与即时更新。

广度优先 or 深度优先

这个跟爬虫有关,比较标准的是如果不考虑时间并且互联网静态不变,两者一样,但是现实中这个问题会演变成如何在有限时间里最多地爬下最重要的网页,此时广度优先更适合,因为各个网页最重要的是首页,然后是从首页直接链接的地址,因此爬虫爬网页的顺序的调度程序原理基本上是广度优先;由于爬虫是由成千上万台服务器组成的分布系统,在网络通信中为了避免多次握手降低下载的效率,会让指定服务器下载只负责一个网站,下完一个网站再进行下一个,而不是每个网站先轮流下载5%;综合来看网络爬虫不是简单的深度或者广度,而是需要一个调度系统管理下载的优先级,利用优先级队列,当然如果访问过的会利用hash表记录下来防止重复下载,在工程上和广度优先更相似,因此爬虫中广度优先的成分多一些。

urllib和urllib2的区别

  1. urllib提供urlencode方法用来GET查询字符串的产生,而urllib2没有。
  2. urllib2可以接受一个Request类的实例来设置URL请求的headers,urllib仅可以接受URL。这意味着,你不可以伪装你的User Agent字符串等。

ofashion学习记录

  • sys.modules[__name__].__file__获得当前运行文件的相对路径
  • os.path.abspath(相对路径)获得绝对路径
  • os.path.split()将文件名和路径分割开
  • os.path.normpath()规范化路径
  • os.chdir(p)将目前工作目录变为p(change dir)
  • imp.load_module(modname)导入模块
  • pkgutil.iter_modules遍历出路径下单层所有模块/包,walk_packages可深度遍历出所有模块,两者常与inspect.getmembers一起使用,后者获取模块/包的所有属性,可用来筛选模块/包
  • @classmethod创建类方法,方法中第一个参数将类传进来,据自己观察,应用在该方法/操作需要全局性地使用,或者在全局唯一
  • @staticmethod创建一个静态方法,需要在类/实例中使用地方法,但是该方法与类/实例无关,也即是说该方法可以放在类外定义,据自己理解,该方法每次执行完有一个变量可以供给下次调用时使用(使用setattrgetattr进行设置和获取)。
  • scrapy shell -s USER_AGENT='custom user agent' 'http://www.example.com'给shell加入user-agent
  • strip()用于移除字符串头尾指定的字符(默认为空格)

Python面试题

1. Python的函数参数传递

看两个例子:

1
2
3
4
5
a = 1
def fun(a):
a = 2
fun(a)
print a # 1

1
2
3
4
5
a = []
def fun(a):
a.append(1)
fun(a)
print a # [1]

所有的变量都可以理解是内存中一个对象的“引用”,或者,也可以看似c中void*的感觉。

通过id来看引用a的内存地址可以比较理解:

1
2
3
4
5
6
7
8
a = 1
def fun(a):
print "func_in",id(a) # func_in 41322472
a = 2
print "re-point",id(a), id(2) # re-point 41322448 41322448
print "func_out",id(a), id(1) # func_out 41322472 41322472
fun(a)
print a # 1

注:具体的值在不同电脑上运行时可能不同。

可以看到,在执行完a = 2之后,a引用中保存的值,即内存地址发生变化,由原来1对象的所在的地址变成了2这个实体对象的内存地址。

而第2个例子a引用保存的内存值就不会发生变化:

1
2
3
4
5
6
7
a = []
def fun(a):
print "func_in",id(a) # func_in 53629256
a.append(1)
print "func_out",id(a) # func_out 53629256
fun(a)
print a # [1]

这里记住的是类型是属于对象的,而不是变量。而对象有两种,“可更改”(mutable)与“不可更改”(immutable)对象。在python中,strings, tuples, 和numbers是不可更改的对象,而 list, dict, set 等则是可以修改的对象。(这就是这个问题的重点)

当一个引用传递给函数的时候,函数自动复制一份引用,这个函数里的引用和外边的引用没有半毛关系了.所以第一个例子里函数把引用指向了一个不可变对象,当函数返回的时候,外面的引用没半毛感觉.而第二个例子就不一样了,函数内的引用指向的是可变对象,对它的操作就和定位了指针地址一样,在内存里进行修改.

如果还不明白的话,这里有更好的解释: http://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

2. Python中的元类(metaclass)

转载于 http://blog.jobbole.com/21351/
译注:这是一篇在Stack overflow上很热的帖子。提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解。他知道这肯定和自省有关,但仍然觉得不太明白,希望大家可以给出一些实际的例子和代码片段以帮助理解,以及在什么情况下需要进行元编程。于是e-satis同学给出了神一般的回复,该回复获得了985点的赞同点数,更有人评论说这段回复应该加入到Python的官方文档中去。而e-satis同学本人在Stack Overflow中的声望积分也高达64271分。以下就是这篇精彩的回复(提示:非常长)

类也是对象

在理解元类之前,你需要先掌握Python中的类。Python中类的概念借鉴于Smalltalk,这显得有些奇特。在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在Python中这一点仍然成立:

1
2
3
4
5
6
>>> class ObjectCreator(object):
… pass

>>> my_object = ObjectCreator()
>>> print my_object
<__main__.ObjectCreator object at 0x8974f2c>

但是,Python中的类还远不止如此。类同样也是一种对象。是的,没错,就是对象。只要你使用关键字class,Python解释器在执行的时候就会创建一个对象。下面的代码段:

1
2
3
>>> class ObjectCreator(object):
… pass

将在内存中创建一个对象,名字就是ObjectCreator。这个对象(类)自身拥有创建对象(类实例)的能力,而这就是为什么它是一个类的原因。但是,它的本质仍然是一个对象,于是乎你可以对它做如下的操作:

1) 你可以将它赋值给一个变量

2) 你可以拷贝它

3) 你可以为它增加属性

4) 你可以将它作为函数参数进行传递

下面是示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> print ObjectCreator     # 你可以打印一个类,因为它其实也是一个对象
<class '__main__.ObjectCreator'>
>>> def echo(o):
… print o

>>> echo(ObjectCreator) # 你可以将类做为参数传给函数
<class '__main__.ObjectCreator'>
>>> print hasattr(ObjectCreator, 'new_attribute')
Fasle
>>> ObjectCreator.new_attribute = 'foo' # 你可以为类增加属性
>>> print hasattr(ObjectCreator, 'new_attribute')
True
>>> print ObjectCreator.new_attribute
foo
>>> ObjectCreatorMirror = ObjectCreator # 你可以将类赋值给一个变量
>>> print ObjectCreatorMirror()
<__main__.ObjectCreator object at 0x8997b4c>

动态地创建类

因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用class关键字即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> def choose_class(name):
… if name == 'foo':
… class Foo(object):
… pass
… return Foo # 返回的是类,不是类的实例
… else:
… class Bar(object):
… pass
… return Bar

>>> MyClass = choose_class('foo')
>>> print MyClass # 函数返回的是类,不是类的实例
<class '__main__'.Foo>
>>> print MyClass() # 你可以通过这个类创建类实例,也就是对象
<__main__.Foo object at 0x89c6d4c>

但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们必须是通过什么东西来生成的才对。当你使用class关键字时,Python解释器自动创建这个对象。但就和Python中的大多数事情一样,Python仍然提供给你手动处理的方法。还记得内建函数type吗?这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:

1
2
3
4
5
6
7
8
>>> print type(1)
<type 'int'>
>>> print type("1")
<type 'str'>
>>> print type(ObjectCreator)
<type 'type'>
>>> print type(ObjectCreator())
<class '__main__.ObjectCreator'>

这里,type有一种完全不同的能力,它也能动态的创建类。type可以接受一个类的描述作为参数,然后返回一个类。(我知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很傻的事情,但这在Python中是为了保持向后兼容性)

type可以像这样工作:

1
type(类名, 父类的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))

比如下面的代码:

1
2
>>> class MyShinyClass(object):
… pass

可以手动像这样创建:

1
2
3
4
5
>>> MyShinyClass = type('MyShinyClass', (), {})  # 返回一个类对象
>>> print MyShinyClass
<class '__main__.MyShinyClass'>
>>> print MyShinyClass() # 创建一个该类的实例
<__main__.MyShinyClass object at 0x8997cec>

你会发现我们使用“MyShinyClass”作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。

type 接受一个字典来为类定义属性,因此

1
2
>>> class Foo(object):
… bar = True

可以翻译为:

1
>>> Foo = type('Foo', (), {'bar':True})

并且可以将Foo当成一个普通的类一样使用:

1
2
3
4
5
6
7
8
9
>>> print Foo
<class '__main__.Foo'>
>>> print Foo.bar
True
>>> f = Foo()
>>> print f
<__main__.Foo object at 0x8a9b84c>
>>> print f.bar
True

当然,你可以向这个类继承,所以,如下的代码:

1
2
>>> class FooChild(Foo):
… pass

就可以写成:

1
2
3
4
5
>>> FooChild = type('FooChild', (Foo,),{})
>>> print FooChild
<class '__main__.FooChild'>
>>> print FooChild.bar # bar属性是由Foo继承而来
True

最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了。

1
2
3
4
5
6
7
8
9
10
11
>>> def echo_bar(self):
… print self.bar

>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

你可以看到,在Python中,类也是对象,你可以动态的创建类。这就是当你使用关键字class时Python在幕后做的事情,而这就是通过元类来实现的。

到底什么是元类(终于到主题了)

元类就是用来创建类的“东西”。你创建类就是为了创建类的实例对象,不是吗?但是我们已经学习到了Python中的类也是对象。好吧,元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解为:

1
2
MyClass = MetaClass()
MyObject = MyClass()

你已经看到了type可以让你像这样做:

1
MyClass = type('MyClass', (), {})

这是因为函数type实际上是一个元类。type就是Python在背后用来创建所有类的元类。现在你想知道那为什么type会全部采用小写形式而不是Type呢?好吧,我猜这是为了和str保持一致性,str是用来创建字符串对象的类,而int是用来创建整数对象的类。type就是创建类对象的类。你可以通过检查class属性来看到这一点。Python中所有的东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来。

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>>foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>

现在,对于任何一个classclass属性又是什么呢?

1
2
3
4
5
6
7
8
>>> a.__class__.__class__
<type 'type'>
>>> age.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>

因此,元类就是创建类这种对象的东西。如果你喜欢的话,可以把元类称为“类工厂”(不要和工厂类搞混了:D) type就是Python的内建元类,当然了,你也可以创建自己的元类。

metaclass属性

你可以在写一个类的时候为其添加metaclass属性。

1
2
3
class Foo(object):
__metaclass__ = something…
[…]

如果你这么做了,Python就会用元类来创建类Foo。小心点,这里面有些技巧。你首先写下class Foo(object),但是类对象Foo还没有在内存中创建。Python会在类的定义中寻找metaclass属性,如果找到了,Python就会用它来创建类Foo,如果没有找到,就会用内建的type来创建这个类。把下面这段话反复读几次。当你写如下代码时 :

1
2
class Foo(Bar):
pass

Python做了如下的操作:

Foo中有metaclass这个属性吗?如果是,Python会在内存中通过metaclass创建一个名字为Foo的类对象(我说的是类对象,请紧跟我的思路)。如果Python没有找到metaclass,它会继续在Bar(父类)中寻找metaclass属性,并尝试做和前面同样的操作。如果Python在任何父类中都找不到metaclass,它就会在模块层次中去寻找metaclass,并尝试做同样的操作。如果还是找不到metaclass,Python就会用内置的type来创建这个类对象。

现在的问题就是,你可以在metaclass中放置些什么代码呢?答案就是:可以创建一个类的东西。那么什么可以用来创建一个类呢?type,或者任何使用到type或者子类化type的东东都可以。

自定义元类

元类的主要目的就是为了当创建类时能够自动地改变类。通常,你会为API做这样的事情,你希望可以创建符合当前上下文的类。假想一个很傻的例子,你决定在你的模块里所有的类的属性都应该是大写形式。有好几种方法可以办到,但其中一种就是通过在模块级别设定metaclass。采用这种方法,这个模块中的所有类都会通过这个元类来创建,我们只需要告诉元类把所有的属性都改成大写形式就万事大吉了。

幸运的是,metaclass实际上可以被任意调用,它并不需要是一个正式的类(我知道,某些名字里带有‘class’的东西并不需要是一个class,画画图理解下,这很有帮助)。所以,我们这里就先以一个简单的函数作为例子开始。

1
2
3
4
5
# 元类会自动将你通常传给‘type’的参数作为自己的参数传入
def upper_attr(future_class_name, future_class_parents, future_class_attr):
'''返回一个类对象,将属性都转为大写形式'''
# 选择所有不以'__'开头的属性
attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
1
2
3
4
5
6
7
8
9
10
11
    # 将它们转为大写形式
uppercase_attr = dict((name.upper(), value) for name, value in attrs)

# 通过'type'来做类对象的创建
return type(future_class_name, future_class_parents, uppercase_attr)

__metaclass__ = upper_attr # 这会作用到这个模块中的所有类

class Foo(object):
# 我们也可以只在这里定义__metaclass__,这样就只会作用于这个类中
bar = 'bip'
1
2
3
4
5
6
7
8
print hasattr(Foo, 'bar')
# 输出: False
print hasattr(Foo, 'BAR')
# 输出:True

f = Foo()
print f.BAR
# 输出:'bip'

现在让我们再做一次,这一次用一个真正的class来当做元类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 请记住,'type'实际上是一个类,就像'str'和'int'一样
# 所以,你可以从type继承
class UpperAttrMetaClass(type):
# __new__ 是在__init__之前被调用的特殊方法
# __new__是用来创建对象并返回之的方法
# 而__init__只是用来将传入的参数初始化给对象
# 你很少用到__new__,除非你希望能够控制对象的创建
# 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__
# 如果你希望的话,你也可以在__init__中做些事情
# 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用
def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
uppercase_attr = dict((name.upper(), value) for name, value in attrs)
return type(future_class_name, future_class_parents, uppercase_attr)

但是,这种方式其实不是OOP。我们直接调用了type,而且我们没有改写父类的new方法。现在让我们这样去处理:

1
2
3
4
5
6
7
8
class UpperAttrMetaclass(type):
def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
uppercase_attr = dict((name.upper(), value) for name, value in attrs)

# 复用type.__new__方法
# 这就是基本的OOP编程,没什么魔法
return type.__new__(upperattr_metaclass, future_class_name, future_class_parents, uppercase_attr)

你可能已经注意到了有个额外的参数upperattr_metaclass,这并没有什么特别的。类方法的第一个参数总是表示当前的实例,就像在普通的类方法中的self参数一样。当然了,为了清晰起见,这里的名字我起的比较长。但是就像self一样,所有的参数都有它们的传统名称。因此,在真实的产品代码中一个元类应该是像这样的:

1
2
3
4
5
class UpperAttrMetaclass(type):
def __new__(cls, name, bases, dct):
attrs = ((name, value) for name, value in dct.items() if not name.startswith('__')
uppercase_attr = dict((name.upper(), value) for name, value in attrs)
return type.__new__(cls, name, bases, uppercase_attr)

如果使用super方法的话,我们还可以使它变得更清晰一些,这会缓解继承(是的,你可以拥有元类,从元类继承,从type继承)

1
2
3
4
5
class UpperAttrMetaclass(type):
def __new__(cls, name, bases, dct):
attrs = ((name, value) for name, value in dct.items() if not name.startswith('__'))
uppercase_attr = dict((name.upper(), value) for name, value in attrs)
return super(UpperAttrMetaclass, cls).__new__(cls, name, bases, uppercase_attr)

就是这样,除此之外,关于元类真的没有别的可说的了。使用到元类的代码比较复杂,这背后的原因倒并不是因为元类本身,而是因为你通常会使用元类去做一些晦涩的事情,依赖于自省,控制继承等等。确实,用元类来搞些“黑暗魔法”是特别有用的,因而会搞出些复杂的东西来。但就元类本身而言,它们其实是很简单的:

1) 拦截类的创建

2) 修改类

3) 返回修改之后的类

为什么要用metaclass类而不是函数?

由于metaclass可以接受任何可调用的对象,那为何还要使用类呢,因为很显然使用类会更加复杂啊?这里有好几个原因:

1) 意图会更加清晰。当你读到UpperAttrMetaclass(type)时,你知道接下来要发生什么。

2) 你可以使用OOP编程。元类可以从元类中继承而来,改写父类的方法。元类甚至还可以使用元类。

3) 你可以把代码组织的更好。当你使用元类的时候肯定不会是像我上面举的这种简单场景,通常都是针对比较复杂的问题。将多个方法归总到一个类中会很有帮助,也会使得代码更容易阅读。

4) 你可以使用new, init以及call这样的特殊方法。它们能帮你处理不同的任务。就算通常你可以把所有的东西都在new里处理掉,有些人还是觉得用init更舒服些。

5) 哇哦,这东西的名字是metaclass,肯定非善类,我要小心!

究竟为什么要使用元类?

现在回到我们的大主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它:

“元类就是深度的魔法,99%的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类。” —— Python界的领袖 Tim Peters

元类的主要用途是创建API。一个典型的例子是Django ORM。它允许你像这样定义:

1
2
3
class Person(models.Model):
name = models.CharField(max_length=30)
age = models.IntegerField()

但是如果你像这样做的话:

1
2
guy  = Person(name='bob', age='35')
print guy.age

这并不会返回一个IntegerField对象,而是会返回一个int,甚至可以直接从数据库中取出数据。这是有可能的,因为models.Model定义了metaclass, 并且使用了一些魔法能够将你刚刚定义的简单的Person类转变成对数据库的一个复杂hook。Django框架将这些看起来很复杂的东西通过暴露出一个简单的使用元类的API将其化简,通过这个API重新创建代码,在背后完成真正的工作。

结语

首先,你知道了类其实是能够创建出类实例的对象。好吧,事实上,类本身也是实例,当然,它们是元类的实例。

1
2
3
>>>class Foo(object): pass
>>> id(Foo)
142630324

Python中的一切都是对象,它们要么是类的实例,要么是元类的实例,除了type。type实际上是它自己的元类,在纯Python环境中这可不是你能够做到的,这是通过在实现层面耍一些小手段做到的。其次,元类是很复杂的。对于非常简单的类,你可能不希望通过使用元类来对类做修改。你可以通过其他两种技术来修改类:

1) Monkey patching

2) class decorators

当你需要动态修改类时,99%的时间里你最好使用上面这两种技术。当然了,其实在99%的时间里你根本就不需要动态修改类 :D

3. @staticmethod和@classmethod

Python其实有3个方法,即静态方法(staticmethod),类方法(classmethod)和实例方法,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def foo(x):
print "executing foo(%s)"%(x)

class A(object):
def foo(self,x):
print "executing foo(%s,%s)"%(self,x)

@classmethod
def class_foo(cls,x):
print "executing class_foo(%s,%s)"%(cls,x)

@staticmethod
def static_foo(x):
print "executing static_foo(%s)"%x

a=A()

这里先理解下函数参数里面的self和cls.这个self和cls是对类或者实例的绑定,对于一般的函数来说我们可以这么调用foo(x),这个函数就是最常用的,它的工作跟任何东西(类,实例)无关.对于实例方法,我们知道在类里每次定义方法的时候都需要绑定这个实例,就是foo(self, x),为什么要这么做呢?因为实例方法的调用离不开实例,我们需要把实例自己传给函数,调用的时候是这样的a.foo(x)(其实是foo(a, x)).类方法一样,只不过它传递的是类而不是实例,A.class_foo(x).注意这里的self和cls可以替换别的参数,但是python的约定是这俩,还是不要改的好。

对于静态方法其实和普通的方法一样,不需要对谁进行绑定,唯一的区别是调用的时候需要使用a.static_foo(x)或者A.static_foo(x)来调用。

4. 类变量和实例变量

类变量:

是可在类的所有实例之间共享的值(也就是说,它们不是单独分配给每个实例的)。例如下例中,num_of_instance 就是类变量,用于跟踪存在着多少个Test 的实例。

实例变量:

实例化之后,每个实例单独拥有的变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
class Test(object):  
num_of_instance = 0
def __init__(self, name):
self.name = name
Test.num_of_instance += 1

if __name__ == '__main__':
print Test.num_of_instance # 0
t1 = Test('jack')
print Test.num_of_instance # 1
t2 = Test('lucy')
print t1.name , t1.num_of_instance # jack 2
print t2.name , t2.num_of_instance # lucy 2

补充的例子

1
2
3
4
5
6
7
8
9
class Person:
name="aaa"

p1=Person()
p2=Person()
p1.name="bbb"
print p1.name # bbb
print p2.name # aaa
print Person.name # aaa

这里p1.name="bbb"是实例调用了类变量,这其实和上面第一个问题一样,就是函数传参的问题,p1.name一开始是指向的类变量name="aaa",但是在实例的作用域里把类变量的引用改变了,就变成了一个实例变量,self.name不再引用Person的类变量name了。

可以看看下面的例子:

1
2
3
4
5
6
7
8
9
class Person:
name=[]

p1=Person()
p2=Person()
p1.name.append(1)
print p1.name # [1]
print p2.name # [1]
print Person.name # [1]

5. Python自省

这个也是python彪悍的特性.

自省就是面向对象的语言所写的程序在运行时,所能知道对象的类型.简单一句就是运行时能够获得对象的类型.比如type(),dir(),getattr(),hasattr(),isinstance().

1
2
3
4
5
a = [1,2,3]
b = {'a':1,'b':2,'c':3}
c = True
print type(a),type(b),type(c) # <type 'list'> <type 'dict'> <type 'bool'>
print isinstance(a,list) # True

6. 字典推导式

可能你见过列表推导时,却没有见过字典推导式,在2.7中才加入的:

d = {key: value for (key, value) in iterable}

7. Python中单下划线和双下划线

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> class MyClass():
... def __init__(self):
... self.__superprivate = "Hello"
... self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print mc.__superprivate
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: myClass instance has no attribute '__superprivate'
>>> print mc._semiprivate
, world!
>>> print mc.__dict__
{'_MyClass__superprivate': 'Hello', '_semiprivate': ', world!'}

__foo__:一种约定,Python内部的名字,用来区别其他用户自定义的命名,以防冲突,就是例如__init__(),__del__(),__call__()这些特殊方法

_foo:一种约定,用来指定变量私有.程序员用来指定私有变量的一种方式.不能用from module import * 导入,其他方面和公有一样访问;

__foo:这个有真正的意义:解析器用_classname__foo来代替这个名字,以区别和其他类相同的命名,它无法直接像公有成员一样随便访问,通过对象名._类名__xxx这样的方式可以访问.

8. 字符串格式化:%和.format

.format在许多方面看起来更便利.对于%最烦人的是它无法同时传递一个变量和元组.你可能会想下面的代码不会有什么问题:

"hi there %s" % name

但是,如果name恰好是(1,2,3),它将会抛出一个TypeError异常.为了保证它总是正确的,你必须这样做:

"hi there %s" % (name,)   # 提供一个单元素的数组而不是一个参数

但是有点丑..format就没有这些问题.你给的第二个问题也是这样,.format好看多了.

你为什么不用它?

  • 不知道它(在读这个之前)
  • 为了和Python2.5兼容(譬如logging库建议使用%(issue #4))

9. 迭代器和生成器

这个是stackoverflow里python排名第一的问题,值得一看: http://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do-in-python

这是中文版: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/1/README.html

这里有个关于生成器的创建问题面试官有考: 问: 将列表生成式中[]改成() 之后数据结构是否改变? 答案:是,从列表变为生成器

1
2
3
4
5
6
>>> L = [x*x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x*x for x in range(10))
>>> g
<generator object <genexpr> at 0x0000028F8B774200>

通过列表生成式,可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含百万元素的列表,不仅是占用很大的内存空间,如:我们只需要访问前面的几个元素,后面大部分元素所占的空间都是浪费的。因此,没有必要创建完整的列表(节省大量内存空间)。在Python中,我们可以采用生成器:边循环,边计算的机制—>generator

10. args and *kwargs

*args**kwargs只是为了方便并没有强制使用它们.

当你不确定你的函数里将要传递多少参数时你可以用*args.例如,它可以传递任意数量的参数:

1
2
3
4
5
6
7
8
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print '{0}. {1}'.format(count, thing)
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage

相似的,**kwargs允许你使用没有事先定义的参数名:

1
2
3
4
5
6
7
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print '{0} = {1}'.format(name, value)
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit

你也可以混着用.命名参数首先获得参数值然后所有的其他参数都传递给*args**kwargs.命名参数在列表的最前端.例如:

1
def table_things(titlestring, **kwargs)

*args**kwargs可以同时在函数的定义中,但是*args必须在**kwargs前面.

当调用函数时你也可以用***语法.例如:

1
2
3
4
5
6
7
>>> def print_three_things(a, b, c):
... print 'a = {0}, b = {1}, c = {2}'.format(a,b,c)
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)

a = aardvark, b = baboon, c = cat

就像你看到的一样,它可以传递列表(或者元组)的每一项并把它们解包.注意必须与它们在函数里的参数相吻合.当然,你也可以在函数定义或者函数调用时用*.

http://stackoverflow.com/questions/3394835/args-and-kwargs

11. 面向切面编程AOP和装饰器

这个AOP一听起来有点懵,同学面阿里的时候就被问懵了…

装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

这个问题比较大,推荐: http://stackoverflow.com/questions/739654/how-can-i-make-a-chain-of-function-decorators-in-python

中文: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/3/README.html

12. 鸭子类型

“当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。”

我们并不关心对象是什么类型,到底是不是鸭子,只关心行为。

比如在python中,有很多file-like的东西,比如StringIO,GzipFile,socket。它们有很多相同的方法,我们把它们当作文件使用。

又比如list.extend()方法中,我们并不关心它的参数是不是list,只要它是可迭代的,所以它的参数可以是list/tuple/dict/字符串/生成器等.

鸭子类型在动态语言中经常使用,非常灵活,使得python不想java那样专门去弄一大堆的设计模式。

13. Python中重载

引自知乎: http://www.zhihu.com/question/20053359

函数重载主要是为了解决两个问题。

可变参数类型。
可变参数个数。
另外,一个基本的设计原则是,仅仅当两个函数除了参数类型和参数个数不同以外,其功能是完全相同的,此时才使用函数重载,如果两个函数的功能其实不同,那么不应当使用重载,而应当使用一个名字不同的函数。

好吧,那么对于情况 1 ,函数功能相同,但是参数类型不同,python 如何处理?答案是根本不需要处理,因为 python 可以接受任何类型的参数,如果函数的功能相同,那么不同的参数类型在 python 中很可能是相同的代码,没有必要做成两个不同函数。

那么对于情况 2 ,函数功能相同,但参数个数不同,python 如何处理?大家知道,答案就是缺省参数。对那些缺少的参数设定为缺省参数即可解决问题。因为你假设函数功能相同,那么那些缺少的参数终归是需要用的。

好了,鉴于情况 1 跟 情况 2 都有了解决方案,python 自然就不需要函数重载了。

14. 新式类和旧式类

这篇文章很好的介绍了新式类的特性: http://www.cnblogs.com/btchenguang/archive/2012/09/17/2689146.html

了解一下新式类与经典类的区别,从创建方法上可以明显的看出:

1
2
3
4
5
6
#新式类
class C(object):
pass
#经典类
class B:
pass

简单的说,新式类是在创建的时候继承内置object对象(或者是从内置类型,如list,dict等),而经典类是直接声明的。使用dir()方法也可以看出新式类中定义很多新的属性和方法,而经典类好像就2个:

这些新的属性和方法都是从object对象中继承过来的。

内置的object对象

内置的object对象是所有内置,object对象定义了一系列特殊的方法实现所有对象的默认行为。

  1. __new____init__方法
    这两个方法是用来创建object的子类对象,静态方法__new__()用来创建类的实例,然后再调用__init__()来初始化实例。

  2. __delattr__,__getattribute__,__setattr__方法
    对象使用这些方法来处理属性的访问

  3. __hash__, __repr__, __str__方法
    print(someobj)会调用someobj.__str__(), 如果__str__没有定义,则会调用someobj.__repr__(),

__str__()__repr__()的区别:
默认的实现是没有任何作用的
__repr__的目标是对象信息唯一性
__str__的目标是对象信息的可读性
容器对象的__str__一般使用的是对象元素的__repr__
如果重新定义了__repr__,而没有定义__str__,则默认调用__str__时,调用的是__repr__
也就是说好的编程习惯是每一个类都需要重写一个__repr__方法,用于提供对象的可读信息,而重写__str__方法是可选的。实现__str__方法,一般是需要更加好看的打印效果,比如你要制作一个报表的时候等。可以允许object的子类重载这些方法,或者添加新的方法。

新式类很早在2.2就出现了,所以旧式类完全是兼容的问题,Python3里的类全部都是新式类.这里有一个MRO问题可以了解下(新式类是广度优先,旧式类是深度优先),里讲的也很多.

一个旧式类的深度优先的例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class A():
def foo1(self):
print "A"
class B(A):
def foo2(self):
pass
class C(A):
def foo1(self):
print "C"
class D(B, C):
pass

d = D()
d.foo1()

# A

按照经典类的查找顺序从左到右深度优先的规则,在访问d.foo1()的时候,D这个类是没有的..那么往上查找,先找到B,里面没有,深度优先,访问A,找到了foo1(),所以这时候调用的是A的foo1(),从而导致C重写的foo1()被绕过。

15. __new____init__的区别

这个__new__确实很少见到,先做了解吧.

  1. __new__是一个静态方法,而__init__是一个实例方法.
  2. __new__方法会返回一个创建的实例,而__init__什么都不返回.
  3. 只有在__new__返回一个cls的实例时后面的__init__才能被调用.
  4. 当创建一个新实例时调用__new__,初始化一个实例时用__init__.

ps: __metaclass__是创建类时起作用.所以我们可以分别使用__metaclass__,__new____init__来分别在类创建,实例创建和实例初始化的时候做一些小手脚.

16. 单例模式

单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
__new__()__init__()之前被调用,用于生成实例对象。利用这个方法和类的属性的特点可以实现设计模式的单例模式。单例模式是指创建唯一对象,单例模式设计的类只能实例

这个绝对常考啊.绝对要记住1~2个方法,当时面试官是让手写的.

  1. 使用__new__方法

    1
    2
    3
    4
    5
    6
    7
    8
    9
    class Singleton(object):
    def __new__(cls, *args, **kw):
    if not hasattr(cls, '_instance'):
    orig = super(Singleton, cls)
    cls._instance = orig.__new__(cls, *args, **kw)
    return cls._instance

    class MyClass(Singleton):
    a = 1
  2. 共享属性

创建实例时把所有实例的__dict__指向同一个字典,这样它们具有相同的属性和方法.

1
2
3
4
5
6
7
8
9
class Borg(object):
_state = {}
def __new__(cls, *args, **kw):
ob = super(Borg, cls).__new__(cls, *args, **kw)
ob.__dict__ = cls._state
return ob

class MyClass2(Borg):
a = 1

  1. 装饰器版本

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    def singleton(cls, *args, **kw):
    instances = {}
    def getinstance():
    if cls not in instances:
    instances[cls] = cls(*args, **kw)
    return instances[cls]
    return getinstance

    @singleton
    class MyClass:
    ...
  2. import方法

作为python的模块是天然的单例模式

1
2
3
4
5
6
7
8
9
10
11
# mysingleton.py
class My_Singleton(object):
def foo(self):
pass

my_singleton = My_Singleton()

# to use
from mysingleton import my_singleton

my_singleton.foo()

17. Python中的作用域

Python 中,一个变量的作用域总是由在代码中被赋值的地方所决定的。

当 Python 遇到一个变量的话他会按照这样的顺序进行搜索:

本地作用域(Local)→当前作用域被嵌入的本地作用域(Enclosing locals)→全局/模块作用域(Global)→内置作用域(Built-in)

18. GIL线程全局锁

线程全局锁(Global Interpreter Lock),即Python为了保证线程安全而采取的独立线程运行的限制,说白了就是一个核只能在同一时间运行一个线程.对于io密集型任务,python的多线程起到作用,但对于cpu密集型任务,python的多线程几乎占不到任何优势,还有可能因为争夺资源而变慢。

Python 最难的问题

解决办法就是多进程和下面的协程(协程也只是单CPU,但是能减小切换代价提升性能).

19. 协程

简单点说协程是进程和线程的升级版,进程和线程都面临着内核态和用户态的切换问题而耗费许多切换时间,而协程就是用户自己控制切换的时机,不再需要陷入系统的内核态.

Python里最常见的yield就是协程的思想!可以查看第九个问题.

20. 闭包

闭包(closure)是函数式编程的重要的语法结构。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。

当一个内嵌函数引用其外部作作用域的变量,我们就会得到一个闭包. 总结一下,创建一个闭包必须满足以下几点:

必须有一个内嵌函数
内嵌函数必须引用外部函数中的变量
外部函数的返回值必须是内嵌函数
感觉闭包还是有难度的,几句话是说不明白的,还是查查相关资料.

重点是函数运行后并不会被撤销,就像16题的instance字典一样,当函数运行完后,instance并不被销毁,而是继续留在内存空间里.这个功能类似类里的类变量,只不过迁移到了函数上.

闭包就像个空心球一样,你知道外面和里面,但你不知道中间是什么样.

21. lambda函数

其实就是一个匿名函数,为什么叫lambda?因为和后面的函数式编程有关.

推荐: https://www.zhihu.com/question/20125256

22. Python函数式编程

这个需要适当的了解一下吧,毕竟函数式编程在Python中也做了引用.

推荐: http://coolshell.cn/articles/10822.html

python中函数式编程支持:

filter 函数的功能相当于过滤器。调用一个布尔函数bool_func来迭代遍历每个seq中的元素;返回一个使bool_seq返回值为true的元素的序列。

1
2
3
4
>>>a = [1,2,3,4,5,6,7]
>>>b = filter(lambda x: x > 5, a)
>>>print b
>>>[6,7]

map函数是对一个序列的每个项依次执行函数,下面是对一个序列每个项都乘以2:

1
2
3
>>> a = map(lambda x:x*2,[1,2,3])
>>> list(a)
[2, 4, 6]

reduce函数是对一个序列的每个项迭代调用函数,下面是求3的阶乘:

1
2
>>> reduce(lambda x,y:x*y,range(1,4))
6

23. Python里的拷贝

引用和copy(),deepcopy()的区别

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import copy
a = [1, 2, 3, 4, ['a', 'b']] #原始对象

b = a #赋值,传对象的引用
c = copy.copy(a) #对象拷贝,浅拷贝
d = copy.deepcopy(a) #对象拷贝,深拷贝

a.append(5) #修改对象a
a[4].append('c') #修改对象a中的['a', 'b']数组对象

print 'a = ', a
print 'b = ', b
print 'c = ', c
print 'd = ', d

输出结果:
a = [1, 2, 3, 4, ['a', 'b', 'c'], 5]
b = [1, 2, 3, 4, ['a', 'b', 'c'], 5]
c = [1, 2, 3, 4, ['a', 'b', 'c']]
d = [1, 2, 3, 4, ['a', 'b']]

24. Python垃圾回收机制

Python GC主要使用引用计数(reference counting)来跟踪和回收垃圾。在引用计数的基础上,通过“标记-清除”(mark and sweep)解决容器对象可能产生的循环引用问题,通过“分代回收”(generation collection)以空间换时间的方法提高垃圾回收效率。

  1. 引用计数

PyObject是每个对象必有的内容,其中ob_refcnt就是做为引用计数。当一个对象有新的引用时,它的ob_refcnt就会增加,当引用它的对象被删除,它的ob_refcnt就会减少.引用计数为0时,该对象生命就结束了。

优点:

  • 简单
  • 实时性

缺点:

  • 维护引用计数消耗资源
  • 循环引用
  1. 标记-清除机制

基本思路是先按需分配,等到没有空闲内存的时候从寄存器和程序栈上的引用出发,遍历以对象为节点、以引用为边构成的图,把所有可以访问到的对象打上标记,然后清扫一遍内存空间,把所有没标记的对象释放。

  1. 分代技术

分代回收的整体思想是:将系统中的所有内存块根据其存活时间划分为不同的集合,每个集合就成为一个“代”,垃圾收集频率随着“代”的存活时间的增大而减小,存活时间通常利用经过几次垃圾回收来度量。

Python默认定义了三代对象集合,索引数越大,对象存活时间越长。

举例: 当某些内存块M经过了3次垃圾收集的清洗之后还存活时,我们就将内存块M划到一个集合A中去,而新分配的内存都划分到集合B中去。当垃圾收集开始工作时,大多数情况都只对集合B进行垃圾回收,而对集合A进行垃圾回收要隔相当长一段时间后才进行,这就使得垃圾收集机制需要处理的内存少了,效率自然就提高了。在这个过程中,集合B中的某些内存块由于存活时间长而会被转移到集合A中,当然,集合A中实际上也存在一些垃圾,这些垃圾的回收会因为这种分代的机制而被延迟。

25. Python的List

推荐: http://www.jianshu.com/p/J4U6rR

26. Python的is

is是对比地址,==是对比值

27. read,readline和readlines

  • read 读取整个文件
  • readline 读取下一行,使用生成器方法
  • readlines 读取整个文件到一个迭代器以供我们遍历

28. Python2和3的区别

推荐:Python 2.7.x 与 Python 3.x 的主要差异

29. super init

子类调用父类的方法

http://stackoverflow.com/questions/576169/understanding-python-super-with-init-methods

Python2.7中的super方法浅见

30. range and xrange

都在循环时使用,xrange内存性能更好。

http://stackoverflow.com/questions/94935/what-is-the-difference-between-range-and-xrange-functions-in-python-2-x

一分一毛也是心意